Re-implementation and Evaluation of the
Transformer Model on a Small-Scale Dataset

Philip Pincencia
Department of Electrical and Computer Engineering
University of California, San Diego

A17333789

Raj Bapat
Department of Mathematics
University of California, San Diego

A18533089
April 16, 2025

Video Link: https://wuw.youtube.com/watch?v=kFev-Gibx-k

Abstract

The Transformer model has revolutionized natural language processing
(NLP) by leveraging self-attention mechanisms that eliminate recurrence
and enable efficient parallelization. In this project, we re-implement the
Transformer architecture from scratch and evaluate its performance on
a small-scale English-German translation dataset from the IWSLT 2017
corpus.

Our implementation incorporates all key components seen in Attention
Is All You Need (Vaswani et al) such as masked attention, padding masks,
teacher forcing during training, and autoregressive decoding during infer-
ence. We also record the metrics of our Transformer, measuring BLEU
scores, token-level accuracy, and inference speed, and compare performance
with the original Attention paper and LSTMs. Finally, we discuss the
challenges of training Transformers on small datasets and propose potential
solutions to improve generalization.

1 Introduction

Since its introduction, the Transformer model has become a cornerstone of NLP,
outperforming recurrent neural networks (RNNs) and convolution-based models
on various tasks, including machine translation and language modeling. Unlike
RNN-based architectures (e.g., LSTMs), the Transformer utilizes self-attention

https://www.youtube.com/watch?v=kFev-Gibx-k

to capture long-range dependencies without recurrence, thereby enabling
improved parallelization and potentially faster training.

However, Transformers typically excel on large-scale datasets. When trained on
limited data, they tend to overfit and may struggle to outperform other models.
The goal of this project is to investigate the behavior of Transformers under
data-scarce conditions, compare them to the original Transformer paper as well
as LSTM baselines, and explore ways to optimize their performance.

2 Problem Definition

This project addresses the following key challenges:

e Transformer Re-implementation: Implementing the Transformer model
from scratch, including multi-head attention, masked self-attention, and
encoder-decoder layers.

e Small-Scale Training: Evaluating the performance of Transformers on
a limited dataset (a subset of IWSLT 2017), which is not their typical
domain.

e Mitigating Overfitting: Applying techniques such as dropout, weight
decay, and padding masks to improve generalization.

e Efficient Decoding: Using teacher forcing during training while adopting
autoregressive decoding during inference.

3 Approach

3.1 Dataset and Preprocessing

We use the IWSLT 2017 English-German translation corpus , which was curated
by IWSLT. The dataset comprises:

e Training: ~200,000 sentence pairs
e Validation: ~1,000 sentence pairs
e Testing: ~1,000 sentence pairs

We tokenized our dataset using Byte Pair Encoding (BPE) with a
maximum vocabulary size of 8,000, scaled down from 32,000 in the original
paper. This reduction was necessary due to the smaller dataset size (200,000
sentence pairs compared to 4.5 million in the original implementation). A
smaller vocabulary helps prevent overfitting and improves efficiency for training
on limited data.

3.2 Model Architectures
3.2.1 Transformer Model

Architecture Diagram: Figure below shows the Transformer architecture
diagram as described in the paper ” Attention is All You Need”.

Qutput
Probabilities

Add & Norm

Feed
Forward

J

| Add & Norm |<-\
A5\ Nl Mult-Head
Feed Attention
Forward Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
t 4 t 4
\ J \C —
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Our Transformer implementation follows the architecture of Attention Is All
You Need (Vaswani et al). with some modifications:

e Model Size: Hidden size dpyodel = 256, chosen to reduce overfitting and
meet our hardware constraints.

Attention Heads: 4 heads to allow richer representations.

e Depth: 4 encoder and 4 decoder layers to keep the model lightweight.

Feed-Forward Dimension: dg = 4 x 256 = 1024.

Dropout: 0.3 applied in attention and feed-forward sublayers.
Parameter Count: A rough calculation of the number of parameters is as
follows:

e Embeddings: Two embedding layers with ~4000 tokens each: 2 x (4000 x
256) ~ 2,048,000 parameters

e Encoder Layers: Each layer has ~ 789, 760 parameters; with 4 layers:
4 x 789,760 ~ 3,159,040 parameters

e Decoder Layers: Each layer has =~ 1,053,440 parameters; with 4 layers:
4 x 1,053,440 ~ 4,213, 760 parameters

e Final Projection: A linear layer mapping from 256 to 4000 tokens:
256 x 4000 ~ 1,024,000 parameters

Thus, the total parameter count is roughly:

2,048,000 + 3, 159, 040 + 4, 213, 760 + 1,024, 000 ~ 10.44 million parameters.

3.2.2 Masked Attention and Padding Masks

Masked Attention: During training, we apply a mask to the decoder’s
self-attention to prevent it from “seeing” future words. This forces the model to
rely only on the past and current tokens when predicting the next word.
Without this masking, the decoder could trivially copy the target sequence,
leading to unrealistic performance during training. It ensures that at timestep t,
the model only attends to previous positions < t:

) QKT+ M)
Attention(Q, K, V) = softmax < v,
@51 Vi

where
e (), K,V are Query, Key, and Value Matrices

e M is a mask matrix with —oo for positions < ¢ (i.e. upper triangular
matrix)

e d; is the dimension of the key vectors.

Padding Masks: Since sentences have different lengths, we pad shorter
sequences to a fixed length. However, these padding tokens carry no meaning,
so we use a padding mask to exclude them from attention calculations. This

ensures that the model does not assign importance to padding tokens when
computing attention scores.

3.2.3 LSTM Baseline

While our primary focus is on the Transformer, we also implemented a
bidirectional LSTM model as a baseline. However, the remainder of this report
focuses on the performance and re-implementation of our attention-based model
since the LSTM model doesn’t produce a meaningful BLEU result, although we

will still include it for the sake of completeness

3.3 Training and Decoding Strategy

During training, the Transformer is fed the ground-truth target sequence shifted
right by one token. This approach, known as teacher forcing, allows the
model to converge faster and learn more stable alignments. Without teacher
forcing, the model must rely on its own imperfect predictions early in training,
leading to error accumulation.

Mathematically, if y; is the ground truth token at time step ¢, and g, is the
predicted token, the decoder hidden state is updated as:

st = f(St—1,Yt—1)

During inference, the model generates tokens one by one, feeding its own
previous predictions back into the decoder. We use autoregressive decoding:

st = f(8t—1,0t—1)

This is called autoregressive decoding and is necessary since ground-truth tokens
are not available at test time.
For both equations,

y (ground-truth token): At each time step ¢, y; is the token from the
reference (gold) translation.

o § (predicted token): §; is the model’s predicted token at time t. During
inference, the model must rely on its own predictions rather than the
ground truth.

e s; (decoder state): This represents the internal hidden state (or context)
of the decoder at time ¢. It contains information about all previously
processed tokens (or states).

o f (decoder update function): A generic function that describes how the
decoder updates its internal state. In the Transformer, f is implemented
via multi-head attention and feed-forward layers. In other words, it takes
the previous state s;—; and an input token (either ground-truth y;—; or
predicted ¢;—1) to produce the new state s;.

Why not use teacher forcing during inference? In real-world applications,
we do not have access to ground-truth translations at test time. The model
must generate outputs based on its previous predictions, making autoregressive
decoding necessary for deployment.

4 Experiments and Results

4.1 Optimizer and Learning Rate Scheduler

We utilized the optimal/chosen parameters from the original Transformer paper,
with weight decay to reduce overfitting:

e Learning rate: 0.0007
e Betas: (0.9, 0.98)

e Epsilon: 1 x 1076

o Weight decay: 0.001

We also use a warm-up schedule followed by linear decay, as described in the
paper, to stabilize training. These hyperparameters were directly adapted from
the original work to ensure reproducibility.

4.2 Hardware and Performance

All experiments were conducted with the following specifications:
e Machine type: g2-standard-4 (4 vCPUs, 16 GB Memory)
e GPU: 1 x NVIDIA L4 (with 24 GB VRAM)
e CPU platform: x86/64

4.3 Evaluation Metrics

Performance is measured using:

e BLEU Score: Measures n-gram overlap between generated and reference
translations.

N
BLEU = exp (Z W, logpn> x min(1,e! %)

n=1

e Token-Level Accuracy: Percentage of correctly predicted tokens (ex-
cluding padding). Token accuracy is computed as:

N
Zi:l 1 (9:=yi)

Accuracy = N

where N is the total number of tokens in the dataset and 1(4,—,,) is an
indicator function that counts correct predictions.

e Inference Speed: Tokens processed per second during testing. To mea-
sure the model’s inference speed, we:

1. Ran the trained model on our test set in autoregressive mode,
generating translations token-by-token for each sentence.

2. Recorded the total number of tokens produced during inference (sum-
ming across all test sentences).

3. Measured the wall-clock time from the start of decoding until all
sentences were completed.

4. Computed tokens per second (tok/s) as:

Total Decoded Tokens

Inf Speed = .
frerence spee Total Inference Time (seconds)

We obtained an approximate speed of 2200 tok/s, reflecting the advantage
of parallelized attention compared to strictly sequential models.

4.4 Results

Table 1: Performance Comparison of Transformer

Model Test BLEU Token Accuracy (%) Inference Speed (tok/s)

Transformer 24 30.5 2200

5 Model Training Metrics and Performance
Analysis

To evaluate the performance of our model, we tracked loss, accuracy, and BLEU
score over epochs. These metrics help us understand how well our model is
learning and generalizing to unseen data.

5.1 Loss over Epochs

Figure [2 shows the training and validation loss across epochs. We observe that:

Loss over Epochs

8 o———_.____.————o—._\',,——0——“’““"”“""""

2 6 —&— Training Loss
S —e— Validation Loss

Epoch

Figure 2: Loss over Epochs

The training loss (blue) steadily decreases, indicating that the model is
learning from the data. The validation loss (red), however, remains high and
does not show significant improvement. This suggests that while the model is

optimizing on the training set, it struggles to generalize well to unseen data,
potentially due to overfitting.

We trained our model using the cross-entropy loss with a label smoothing
value of 0.1, following the original paper. Label smoothing helps prevent the
model from becoming overconfident in its predictions by redistributing a small
portion of the probability mass from the correct label to the incorrect ones.
This technique improves generalization and stabilizes training.

5.2 Accuracy over Epochs

Figure [3| shows the accuracy for both training and validation sets. Key
observations:

Accuracy over Epochs

1 —e— Training Accuracy
a0 ~® Validation Accuracy

Accuracy (%)
~
a

2 4 6 8 10
Epoch

Figure 3: Accuracy over Epochs

Training accuracy improves consistently, reaching around 42.36% at epoch 8.
Validation accuracy, however, remains low (77.43%). This reinforces the
earlier hypothesis that the model is overfitting to the training set.

5.3 BLEU Score Over Epochs

Figure [tracks the BLEU score, a metric used to evaluate the quality of
generated sequences in comparison to reference texts. Notable trends:
BLEU score fluctuates across epochs, with a peak at epoch 8 (24.12) before
declining. This suggests that epoch 8 provides the best trade-off between
training progress and generalization.

5.4 Best Model Selection

Based on the observations above, we selected epoch 8 as the best model
checkpoint since it achieves the highest BLEU score (24.12) while maintaining

Validation BLEU Score over Epochs

241 —e— validation BLEU Score
224
204
18

16

BLEU Score

14 1

12 4

10 4

Epoch

Figure 4: BLEU Score over Epochs

reasonable training accuracy. The summary of metrics at this epoch is provided
in Table 21

Train Loss | Train Accuracy (%) | Validation Loss | Validation Accuracy (%)

Validation BLEU

3.9204 42.36 8.0733 7.43

24.12

Table 2: Best model performance at epoch 8.

6 Conclusion and Future Work

Our final model achieved a BLEU score of 24 on the 200,000-sentence subset of
the IWSLT 2017 English-German dataset, compared to the original paper’s 26.4
BLEU trained on 4.5 million sentence pairs. While our model is significantly
smaller, it performs competitively, demonstrating that efficient scaling can
maintain strong translation quality even on limited data.

However, a key limitation is generalization. While our model performs well on
the IWSLT dataset, it may struggle with more diverse corpora due to its
reduced number of layers, heads, and model dimension. The original paper’s
model (8 heads, 6 encoder/decoder layers, 512-dimension) was trained on a
much larger dataset and likely generalizes better to unseen translations.

6.1 Future Work

To further improve performance, we could scale up our model closer to the
original paper’s architecture, train on a larger dataset to enhance generalization,
and explore techniques such as low-rank factorization or quantization to balance

model size with performance.
Expanding our dataset and computational resources would allow us to bridge
the gap between our model and state-of-the-art translation systems.

References

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., ... & Polosukhin, I. (2017). ” Attention Is All You Need.” Advances in
Neural Information Processing Systems (NeurIPS).

Cettolo, M., Federico, M., Bentivogli, L., Niehues, J., Stiiker, S., Sudoh,
K., Yoshino, K., & Federmann, C. (2017). “Overview of the IWSLT 2017
Evaluation Campaign.” In Proceedings of the 14th International Workshop
on Spoken Language Translation (IWSLT 2017), Tokyo, Japan, December
14-15, 2017, pp. 2-14.

10

	Introduction
	Problem Definition
	Approach
	Dataset and Preprocessing
	Model Architectures
	Transformer Model
	Masked Attention and Padding Masks
	LSTM Baseline

	Training and Decoding Strategy

	Experiments and Results
	Optimizer and Learning Rate Scheduler
	Hardware and Performance
	Evaluation Metrics
	Results

	Model Training Metrics and Performance Analysis
	Loss over Epochs
	Accuracy over Epochs
	BLEU Score Over Epochs
	Best Model Selection

	Conclusion and Future Work
	Future Work

