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Probabilistic Approach in Measuring the
Temporal Dynamics of Melodic Complexity

of Jazz Improvisation
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Abstract—Jazz improvisation has been a main challenge to
a content-based Music Information Retrieval. Previous studies
have proposed different approaches in defining and analyzing
complexity of a song, however there has not been enough effort
to measure the complexity of the jazz solo as the solo progresses.
This study aims to measure how the melodic complexity of
jazz solo changes over time. A few methods from previous
studies will be discussed and then a model will be proposed
that hopefully achieves this intended measure and compare it
against existing analysis methods. Promising approaches include
using Information Theory or Probabilistic Models, but we are still
determining if these approaches are valid. Due to the subjective
approach in analyzing music, assumptions need to be made, but if
time permits different or weaker assumptions will be considered.
Whether this approach is meaningful or not hopes to bring an
interesting insight into how we quantify jazz improvisation.

Index Terms—Melodic Complexity, Probabilistic Approach,
Jazz Improvisation, Temporal Dynamics.

I. INTRODUCTION

Measuring complexity in music has been done quite a few
times. There are different types of complexities that people
have considered, notably Rhythmic Complexity, Harmonic
Complexity, but in this research, we are only concerned with
the melodic complexity, which I will define it later. Previous
works used Information theoretic methods, entropy, or even
novel methods such as chroma vector have been developed.
Regardless of the method, most are, however, only concerned
with the complexity of the song as a whole and not much has
been done to measure complexity throughout the song itself.

Particularly in jazz improvisation, which is a complex
creative process. It requires musicians to spontaneously play
according to what is happening in the moment. And so as
a jazz musician myself, I want to come up with something
that can measure how we listeners think about a jazz solo and
makes sense out of it. And with this measure, I am hoping
that it can give insight into how jazz musicians structure and
develop their solo, which can help beginners learn how to
improvise well.

II. CONSIDERED METHODS

Before getting into the main method used, I will briefly
discuss two methods I previously considered and implemented
as a potential solution. This discussion will show some of the
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key qualities that I am looking for in measuring the melodic
complexity.

The first measure is based on what [1] uses to measure the
dissonance between the harmony and the melody.

III. BASICS

The representation of each MIDI note is pitch:duration, with
pitch ∈ {n ∈ Z : 10 ≤ n ≤ 98} and duration ∈ Z+.
Although MIDI numbers ranges from 0 to 128, the physical
range of a piano (which has the widest range) is from MIDI
number 21 to 108, and to make all the notes to be represented
by only 2 symbols, we shift all MIDI number down by 10.
Adding rest, which is denoted as 10, the resulting range is 10
- 98. (Since the MIDI files we are playing with have constant
volume, we assume it to be irrelevant and therefore we will
ignore it.) The alphabet is therefore Σ = {0, 1, ..., 9, :} with
|Σ| = 11.
Denote training sequence as qn1 = q1q2...qn, qi ∈ Σ.
Notation: qba means a subsequence from qa to qb, a ≤
b. Given qn1 , we want to learn the probability distribution
P̂ (sn|sn−1

1 ), ∀sn ∈ Σ. sn−1
1 is the prediction context. For a

D-order Markov Model, then P̂ (sn|sn−1
1 ) = P̂ (sn|sn−1

n−D) ≈
N(sn|sn−1

n−D)∑
σ∈Σ N(σ|sn−1

n−D)
, where N(·|sn−1

n−D) = # of times · appears

after the context sn−1
n−D.

In practice, we add initial count δ at each entry to avoid trouble
when N(sn|sn−1

n−D) = 0:

N(sn|sn−1
n−D) + δ∑

σ∈Σ N(σ|sn−1
n−D + δ)

,

where δ is a parameter chosen carefully.
However, we do not want to this s since this is just some
approximation. We want more structured way of solving this
zero-frequency problem.

IV. VARIABLE-ORDER MARKOV MODEL (VMM)
Since we would want the context length be flexible, a

variable-order Markov Model is needed. One of the most
popular VMM algorithm is Prediction by Partial Matching
(PPM), which is an adaptive statistical data compression
technique. This method is presented in [2]:

• Exclusion Principle: If a context at a lower level is
a suffix of a context at a higher level, this context is
excluded at the lower level → Prioritize higher level
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• Escape Mechanism: For each context s of length k ≤ D,
we allocate a probability mass P̂k(esc|s) for all symbols
that did not appear after the context s (in the training se-
quence). The remaining mass 1− P̂k(esc|s) is distributed
among all other symbols that have non-zero counts for
this context (i.e. appear after s).

The general expression for all PPM algorithm is:

P̂ (σ|snn−D+1) =

{
P̂ (σ|snn−D+1), snn−D+1σ ∈ qn1
P̂ (σ|snn−D+2)P̂ (esc|snn−D+1), else

where σ represents the symbol after the context s.
Here, we ONLY consider the PPM-C (Method C) variant.
For each sequence s and symbol σ

• N(sσ) = # of sσ seen in the training sequence.
• Σs = {σ : N(sσ) > 0} is the set of symbols appearing

after the context s (in the training sequence)
The formula for each P̂k(·|s) is

P̂k(σ|s) =
N(sσ)

|Σs|+
∑

σ′∈Σs
N(sσ′)

, if σ ∈ Σs

P̂k(esc|s) =
|Σs|

|Σs|+
∑

σ′∈Σs
N(sσ′)

Graphically looking at T , |Σs| = number of children of the
node s and

∑
σ′∈Σs

N(sσ′) = total of the counters of those

children. There’s no justification for these escape mechanisms.
Implementation using a Trie T
Each node in T is associated with a symbol and a counter.
Max Depth of T = D + 1
Algorithm:

Algorithm 1 ConstructTrie

Require: qn1 = q1...qn, D ≥ 0
Ensure: P(σ|s)

root ← ϵ
i← 1
while i ≤ n do

x← qi−1
max(i−D,1) ▷ |x| ≤ D

for σ′ in x do
N(σ′) + +

end for
for all s ≤ D do

s′ ← Path ϵ to longest suffix of s
if N(s′σ′) > 0 then

Σs′ ← σ′

end if
Use the equations above to induce P̂ (σ|s)

end for
i++

end while

Note that after parsing the first D symbols, each newly
constructed path is of length D + 1
Fact: counter of any node with corresponding path sσ
(where σ is the symbol associated with the node) is
N(sσ)

Realization: The way the tree T is built is like a Multiway
Trie (MWT).
As an example, let q = ”55 : 4 : 10 : 8 : ” with D = 3. Then,
the trie is represented in Figure 1.

Trie built from the training sequence q = ”55 : 4 : 10 : 8 : ”
with maximal Markov order D = 3

Implementation is available at https://github.com/
1618lip/mel_vomm.

With this, we can start to measure the melodic complexity
of the music.

V. SLIDING WINDOW ANALYSIS

To get the temporal dynamics complexity measurement,
I use the sliding window technique. Given the processed
representation of the entire jazz solo W , the idea is to take
a subinterval W ∈ W of a particular length as a parameter.
This is the window length.

1)
Given the XML (or MXL) file, I parsed in

VI. PITCH PROBABILITY DISTRIBUTION OVER CHORD

Let Ω = {C,C#, D, ..., A#, B} be the sample space and
denote X : Ω → R be a random variable. Denote the
underlying chord as C = {c1, c2, ..., cM} with ck ∈ C as
the chord tones. Typically M = {3, 4, 5}.
Let ω ∈ Ω be an arbitrary note, then

• If ω = c1, then X(ω) = N (w1, σ
2)

• If ω ∈ C and ω ̸= c1, then X(ω) ∼ N (w2, σ
2)

• If ω is in the first priority scale associated with C,
X(ω) ∼ N (w3, σ

2)
• If ω is in the second priority scale associated with C,
X(ω) ∼ N (w4, σ

2)
• If ω is in the third priority scale associated with C,
X(ω) ∼ N (w5, σ

2)
• Else, then X(ω) ∼ N (w6, σ

2),
where w1 > w2 > ... > w6 ≥ 1 and σ2 ≪ 1. Each X(ω) can
be thought of having a fixed weight with an additive Gaussian
Noise, to account for variety in pitch likelihood. If we do this
∀ω ∈ Ω, we get X(Ω). Then, to get the probability of each
note ωk, we do

p(ωk) =
eX(ωk)∑

ω∈Ω

eX(ω)
.

https://github.com/1618lip/mel_vomm
https://github.com/1618lip/mel_vomm
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A. Example

1) Subsubsection Heading Here: Subsubsection text here.

VII. CONCLUSION

The conclusion goes here.

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.

ACKNOWLEDGMENT

I would to thank Professor Massimo Franceschetti and
PhD. Student Tornike Karchkhadze in giving me feedback
and helpful insights. I would also especially like to express
gratitude to my family for the endless support they have given
me while I am working on this project.

REFERENCES

[1] V. Tapiavala, J. Piesner, S. Barman, and F. Fu, “Rein-
forcement learning jazz improvisation: When music meets
game theory,” 2024.

[2] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction
using variable order markov models,” J. Artif. Intell. Res,
vol. 22, 12 2004.


	Introduction
	Considered Methods
	Basics
	Variable-Order Markov Model (VMM)
	Sliding Window Analysis
	Pitch Probability Distribution over Chord
	Example
	Subsubsection Heading Here


	Conclusion
	Appendix A: Proof of the First Zonklar Equation
	Appendix B
	References

