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Abstract—This report contains all the details of the models,
training and testing methods, and analysis we used for the IEEE
2025 Signal Processing Cup.

Index Terms—Deepfake detection, hyperparameter, machine
learning, neural network

I. INTRODUCTION

Building a robust pipeline for machine learning and DSP ap-
plications is never without its challenges, and our team’s jour-
ney was no exception. From navigating unbalanced datasets
and complex extraction processes to designing memory-
efficient training workflows, we encountered numerous obsta-
cles. However, each challenge became an opportunity to inno-
vate, whether it was compressing large data chunks, optimizing
resource allocations for scalable GPU-based processing, or
refining our models. Our project focused on the critical task
of detecting Deepfakes in images using convolutional neural
networks, an issue of growing significance as manipulated
media becomes more prevalent.

What began as an exploration of pre-trained models evolved
into an intensive process of hyperparameter tuning and model
refinement, ultimately pushing our detection accuracy to nearly
96%. This achievement not only highlighted the adaptability of
these models, but also underscored the value of a collaborative
and iterative approach.

This work contributes to the real-world need for high-
accuracy scalable detection systems that can combat misinfor-
mation and protect the integrity of digital media. Our pipeline,
with its emphasis on scalability, accuracy, and efficient work-

flows, stands as a testament to what can be achieved when
real-world challenges are tackled head-on. It offers meaningful
insights into ongoing research in Deepfake detection and the
broader field of Digital Signal Processing.

II. PROJECT STRUCTURE

To ensure efficiency and focus, the project was divided
into two specialized teams: the CNN Team and the Data
Pipeline Team. This division allowed each team to tackle key
challenges in parallel while minimizing dependencies.

• CNN Team: Focused on selecting, optimizing, and im-
plementing deep learning models for Deepfake detection.
They worked with pre-trained models like XCeption,
Inception-v3, and EfficientNet-B4, fine-tuning them for
high accuracy. The main contributions included lever-
aging tools like Optuna for hyperparameter tuning and
exploring ensemble learning techniques. Their work al-
lowed for robust model training and high-performance
detection.

• Data Pipeline Team: Managed the logistics of data set
[1] preparation and integration, addressing issues such as
data imbalance and large file handling. They optimized
workflows for seamless data feeding into the training
pipeline and configured the environment for GPU cluster
training. Their efforts ensured smooth data handling,
allowing the CNN Team to focus on model optimization.

This structure enabled focused contributions from each team
while ensuring that the overall project advanced efficiently.
The clear division of tasks allowed for parallel progress,



minimizing bottlenecks, and improving collaboration across
the teams.

III. METHODOLOGY OVERVIEW

Wavelet-CLIP: Wavelet-CLIP [2] is the first model we
experimented with. The algorithm is divided into two sections:
encoding and classification. In the encoding step, we use
the Vit-L/14 transformer to transform the image into its
latent space, where its features can be used for analysis.
The transformer is also pre-trained via CLIP fashion. Since
Vit-L/14 was trained in a self-supervised way and not fine-
tuned for a specific task like Deepfake detection, it is more
general as it retains all general and robust features of the input
images, which is useful for any task and purposes afterward.
Furthermore, since it is not trained on specific data sets, the
transformer generalizes better to unseen and diverse data sets
(i.e. realistic Deepfakes).

Next, in the classification module, discrete wavelet trans-
forms (DWTs) are used as the main sauce for classification.
Compared to regular 2-D Fourier Transform, DWT can capture
both frequency and location information about the image,
as opposed to just frequency information in 2-D Fourier
Transform. After the DWT is performed, an MLP layer is
used. The first MLP layer in the methodology plays a critical
role in refining the low-frequency features extracted through
the DWT. Low-frequency features capture broad, nuanced
patterns vital for identifying subtle inconsistencies in Deepfake
images. However, these raw features may not be immediately
suitable for classification. The MLP layer processes these
low-frequency components to emphasize task-relevant patterns
while suppressing noise or irrelevant details. This refinement
step enhances the discriminative power of the features, en-
abling the model to focus on granular invariances critical for
distinguishing between real and fake images. By transforming
these features into a more expressive representation, the first
MLP prepares them for recombination with the high-frequency
features in the subsequent step. Then the image is recon-
structed with the refined low frequency components using
inverse discrete wavelet transform (IDWT). Then a second
MLP layer is utilized to serve as the final classifier in the
pipeline, tasked with making a binary decision: real or fake.
Optimized for decision-making, this MLP translates the rich,
multidimensional feature space into a classification result, such
as a probability score or label.

Inceptionv3 + Xception: Our next model is a combina-
tion of the Inceptionv3 [3] and Xception [4] models. The
InceptionV3 model is a deep learning approach that combines
multiple ways of looking at images (like zooming in at
different scales). It uses clever tricks to make computations
faster, like breaking down large tasks (e.g., analyzing a 5x5
image patch) into smaller, easier tasks (two 3x3 patches). The
model has several parts (Inception modules A to E), each
designed to handle different kinds of patterns in images. It also
includes helper layers (auxiliary classifiers) to make learning
smoother and faster. InceptionV3 uses its modular structure
to pull out patterns from images step by step. It reduces the

image size as it goes deeper, focusing on the most important
details. Helper layers also improve learning and act as backup
systems. In the end, a fully connected layer makes the final
decision about the image’s category.

The Xception model is built on a simpler way of doing
convolutions called depth wise separable convolutions. This
breaks down the task into smaller, more efficient steps, fo-
cusing on spatial and channel-specific details separately. It’s
like an improved version of Inception modules. The model has
36 layers grouped into 14 sections, using shortcuts (residual
connections) to keep things fast and accurate. Each layer is
fine-tuned with techniques like normalization to make training
stable. By focusing on separate details, the Xception model
extracts better features for tasks like image recognition. These
features are then passed through layers that decide if an image
belongs to a certain category (real or fake, for example). It’s
designed to work well on new and large datasets without
needing more memory or computation.

Combining these two models allows for better performance
based on Inceptionv3’s fast, modular computations and Xcep-
tion’s efficient convolutional layers.

Modified Inceptionv3: Our last model is a modified version
InceptionV3 based on Sapphire0628 [5]’s existing compar-
isons between VGG16 [6], Resnet18 [7], and Inceptionv3
[3]. To optimize the performance of the models, we tuned
the following hyperparameters: learning rate, regularization
techniques, optimizer, gamma and step size. We chose the
hyperparameters in Sapphire0628’s final round of testing to
train InceptionV3 on the given training and validation sets for
the competition.

After splitting the data into training and validation sets, the
transformer functions using the torchvision.transforms mod-
ule. The training images had the following transformations:
resize, center crop, random horizontal flip, random rotation,
random grayscale, random Gaussian blur, conversion to Py-
Torch tensors, and pixel normalization. The validation set also
underwent resizing and center cropping, as well as tensor
conversion and normalization. These techniques help reduce
noise and create a more robust dataset for learning.

IV. CHALLENGES AND SOLUTIONS

One of the first challenges we faced was managing large
datasets. Because of the large volume of images in both the
training and validation datasets, it is necessary to use our
university’s NRP Nautilus clusters to manage large datasets
and GPU usage. Even so, to train three models with a large
image dataset requires multiple nodes in parallel. Our team
dedicated PCs to run these jobs in the GPU cluster throughout
the competition.

Another challenge we faced was data imbalance. In the
model training code, the imbalance in the dataset was ad-
dressed using class weighting and a weighted random
sampler.

Class weights were computed based on the inverse fre-
quency of each class. Let N be the total number of samples,



Nr the number of real images, and Nf the number of fake
images.

Wr = 2Nr/N (1)

Wf = 2Nf/N (2)

These weights were used in the CrossEntropyLoss function
to ensure that the loss contribution from each class was
balanced during training.

Then, a WeightedRandomSampler was employed to sam-
ple training data such that the probability of selecting a
sample from each class was proportional to its class weight.
Specifically, the weight for each sample was assigned based
on its label (wr or wf ), ensuring balanced sampling during
each training epoch.

V. KEY RESULTS

The evaluation of the Inception V3 model, identified as the
best-performing model during training, demonstrates its strong
ability to classify images as either real or fake. The model
achieved an accuracy of 90.69%, indicating that it correctly
identified the class of the images in the validation set in most
cases.

The precision was measured at 85.99%, showing the
model’s ability to avoid false positives when predicting an
image as real. The recall reached an impressive 97.05%,
highlighting the model’s effectiveness in capturing true pos-
itives—ensuring most real images were correctly classified.
The balance between precision and recall is reflected in the
F1 Score of 91.18%, which represents the harmonic mean of
these two metrics, indicating an excellent overall classification
performance.

Furthermore, the model achieved a ROC-AUC score of
88.68%, showing its capability to distinguish between real and
fake images across various decision thresholds. The equal error
rate (EER), a metric often used in classification problems to
indicate the point where false positive and false negative rates
are equal, was 8.66%, which is commendably low.

From a performance perspective, the model demonstrated
efficient inference speed, with an average time of 0.0907
seconds per image, making it well-suited for real-time or near-
real-time applications.

VI. IMPACT AND RELEVANCE

In this age of technology, misinformation becomes easier
to disseminate as the accelerating development of AI creates
more convincing and elusive Deepfakes. It is imperative to
match or surpass this development with more robust methods
of detection to be a step ahead of the curve. Digital signal
processing concepts such as our experimentation with wavelets
can be the competitive edge against adversarial Deepfakes.
Multidisciplinary technologies like rPPG signal generation are
being adapted to Deepfake detection algorithms with highly
accurate results [8]. By finding more applications of these
concepts, we can better understand not only the extent to
which these concepts can be used but also make it harder
for adversarial Deepfakes to evade detection.

Our work running multiple models rather than a single
model in this competition proves advantageous outside this
project. For Deepfakes in the wild, running images through
parallel processing can safeguard against wrongly labeled
images in one model if found in another model. With this,
images in conflict between models can be put under better
scrutiny. Biases in certain models can be eliminated with other
models running in parallel as well. Running multiple models
is the best way to find the highest accuracy model over several
trials.
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